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A mathematical model of steady-state heat transfer in a laser mirror involving cooled prismatically shaped cells has 

been developed. Using cooling systems with hexahedral and tetrahedral cells (by the number of side walls) as 

examples, the influence of the mirror illumination nonuniformity, reflector thickness, and other parameters on the 

effective heat-transfer coefficient and thermal head coefficient is investigated; the physical limits for heat-transfer 

characteristics in the case of an unlimited increase in heat transfer from the surfaces of the cell walls have been 

determined. 

Very high requirements are imposed on mirrors for high-power laser systems: a high optical destruction threshold and 

small deformations of the optical surface. For these requirements to be met, reliable systems of cooling the reflecting surface are 

needed. Depending on the means of heat removal, different types of mirrors can be distinguished: with a cooled porous sublayer 

[1], with a cooled cavity, of multichannel type, with cooled cells, etc. Mirrors with cooled cells [2], which make it possible to 

employ the joint effect of finning and jet cooling for heat-transfer augmentation, are particularly promising for powerful laser 

systems. 

The laws governing the hydrodynamics and heat transfer of axisymmetric and plane air jets interacting with a plane wall 

were considered in detail in [3, 4]. The problem of heat transfer of a liquid jet flowing past bodies with extended surfaces has 

been studied to a much lesser degree, in particular, when separate jets propagate in closed cells. In [5] the results of experimen- 

tal study of convective heat transfer in single water-cooled cells are presented and the data on the effective heat transfer in a jet 

heat exchanger involving nine water cooled cells of cylindrical shape are given. The determination of the effective heat-transfer 

coefficient of a wall with slotted extended surfaces on the basis of a one-dimensional mathematical model of heat transfer is 

considered. 

Based on the mathematical model of heat transfer in a jet heat exchanger with cooled prismatically shaped cells, the 

effective heat transfer coefficient and the thermal head coefficient have been analytically determined in the present work for the 

cases of the use of cells in the form of hexahedral and tetrahedral prisms with account of the nonuniform illumination of the 

mirror. 

In Fig. 1 the general diagram of the design of a mirror with cooled cells is shown. Reflector 1 has the shape of a circular 

plate 0 ___ r _< R, 0 _< z < 6. It is heated by a local surface heat source with a Gaussian-type flux 

l ] ---- - - q  (r), r (~) ~: Qo exp ( -kor~) .  (1) 
OZ z:::0 

The walls of the cells (fins) 2 together with base 3 and reflector 1 form the closed volume needed for a reliable (in the presence 

of hydrostatic pressure) circulation of liquid supplied through nozzles 4. The heated heat-transfer agent is drained through holes 

5. 

We assume that convective heat transfer takes place on the walls of the cells and on the parts of the reflector back 

surface which contacts the heat-transfer agent: 

OT ~x ( T - -  T m ) : O ,  
0-7- + -2- (2) 
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Fig. 1. Schematic diagram of a mirror with cooled cells. 

where n is the outward normal to the surface considered�9 Here we assume that the mean temperature of the moving heat-trans- 

fer agent T m = const and that it is the same in all the cells. Of course, this requires a certain hydraulic regime the conditions for 

which will be determined in what follows�9 We assume the values of the heat-transfer coefficient/ ,  to be the same on the walls 

and on the bot tom of each cell. This will not entail a large error in the results of calculations [5]�9 

The liquid motion in the cells obeys the laws that are specific of the flow in closed cavities and, as is known, varies 

sharply from a laminar to a turbulent mode at Re - 2300, thus providing an effective heat removal. It is shown in [5] that due 

to the strong jet  effect, the heat transfer from the cell walls greatly exceeds the value predicted by Kraussold's formula [7] for 

heat transfer in an annular channel. Therefore, in order to determine the coefficient of heat transfer on the walls and on the 

bottom of each cell, we shall use the relation 

Nu ~ Re 1/~ Prl /a[ (h,noz!/dnoz.) , (3) 

suggested in [3] and experimentally confirmed in [5]�9 At  hnoz/dnoz = 1-10 the function of the dimensionless distance between the 

nozzle tip and the cell bot tom f(hnoz/dnoz) takes on values close to 1 [5], so that instead of Eq. (3) we obtain 

Nu _ Re r/"~ Pr  I/3. 

Taking into account the fact that Nu = tZDh/2 l and Re = VnozDh/V, the heat-transfer coefficient/ ,  can be expressed in terms of 

the hydraulic diameter of the cell D h (diameter of a circle inscribed into the cell bottom), and the heat-transfer agent velocity at 

the exit of the nozzle Vno z is 

~,o~,1/2 D-I/3 
~,wnozfl 

/* '~  D~{.o , / 2  (4) 

From each cell Dj the mass Mj of the heat-transfer agent is removed for time unit and is replaced by the same amount 

of liquid at temperature Tin which the liquid has at the inlet of the nozzle�9 Therefore, the condition of heat  balance in the cell 

is written down in the form [8] 

~' ~s!" OT dS + M,c (Tin, T i n , ) =  0. 
�9 O n  (5) 

Assuming the axisymmetric arrangement of the cells, the reflector temperature satisfies the stationary heat-conduction 

equation of the form 

02T 1 OT O~T 
Or S + - - - - +  = 0 ,  0 < r < R ,  0 < z < 6 ,  r Or Oz ~ 

under the following boundary-value conditions: condition (1) on the irradiated surface z = 0; condition of convective heat 

transfer (2) on the portions of the surface z = 6 which contact the heat-transfer agent 
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aT ~ ( T - - T ~ ) = O  az + ~ (6)  

and under the condition of  thermal insulation of the side surface 

aT [ = 0 .  
Or r=R 

Taking into account the fact that in the case of thin fins the sum of the areas of the bases of  the cell walls is small as 

compared with the area of the entire reflector Sa, we extend condition (6) to the entire surface S a to approximately determine 

the temperature field of the reflector. In such a statement, the solution of the stationary heat conduction problem can be 

presented analytically as 

v (r, z) = 2 A~eG (z; a.)  do (anr), (7) 
n = l  

where 

v = T - - T m ;  r c z l ) = % ( Z ) = 6 - - Z + ~ , / l x ;  

~o,~ (z; ~ , d  = ~'~'~ ch [~z,~ (5 - -  z)] + rt sh [~,~ (5 - -  z)] n = 2 ,  3, �9 
~ [~t ch (a,,5) + 2 ,~  sh (a,~6)] 

2Qo R 
A,~= ( rexp( - -kor~)Jo(anr )dr ,  n =  l, 2 . . . .  ; 

~R2 [Jo (a~R)] ~ 

a 1 = 0, a n > 0, n = 2, 3 .... are the roots of the equation J l(Ra) = 0. 

The temperature distribution in the side walls of the cells will be sought with the following simplification: at the end 

face Pji of each wall Lji of the cell Dj with an ideal thermal contact with the reflector, the temperature at each point is equal to 

the mean integral temperature of the corresponding portion of the reflector surface S a 

_ 

where S(Pji ) is the surface area of the end face Pji' The opposite end face of the wall Lji is assumed to be thermally insulated. 

Taking into account the fact that the wall thickness h is much smaller than its length l, we assume that the temperature field at 

each vertical section, which is orthogonal to the wall, is independent of the section location. Then the temperature of the wall Lji 

depends only on two variables x and z (Fig. 2); it is determined as the soiution of the boundary-value problem 

02v 02v h 
- - . +  --0, [ x l < - - ,  8 < z < 6 - ~ - H ;  

Ox ~ Oz ~ 2 

Ov 4- t t h - Ov : 0 
- - - O x  2~ v = 0 ,  x = - + - .  2 ; vTz=6=v]~' oz ~--'v--=6+h. 

in the form 

eo 

v]~ (x, z) = 2~t~-v]~ X ~A(f~k)eh[ph(5 + H - -  z)] cos(pt~x) 
~ = l  ch (GH) cos (fJ~h/2) 

where fik > 0 are the roots of the equation flk tan (flkh/2) = p/A, A(fl) = 1/[p2 + (,~2fl2 +/ t2)  .h/2] .13. 

In the balance condition (5) for each cell Dj it is necessary to take into account the heat flux through the portion Saj of 

the reflector back surface S~, which serves as a bottom for this cell, and the heat fluxes through the side walls of the cell. In 

particular, for the central cell D1, whose symmetry axis coincides with the axis 0z (see Fig. 1), we may write 

m ~ :-H a 

i = 1  6 

S~t Oz 

(8) 
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Fig. 2. Diagram of the cell wall. 

where m is the number of the side walls of the cell. Assuming that r = 0 in Eq. (6) and using Eq. (7), we obtain 

~ "~ A~B(~)  = T m ~ -  Tin, 

where B(an) = 1/D cosh (ant3) + 2a n sinh (an6)], Tma x = T(0, 6) is the maximum temperature on the cooled reflector surface. 

Upon calculating the derivatives and integrals in Eq. (8) and excluding T m in the case of cells having the shape of 

hexahedral prisms, we arrive at the equality 

o o  

Tmax - -  Tin --= X ~A,~B (%) + 
,"z = I 

o o  

Here l = DhV'3]-6, 

(9) 

p[~ 0 ~, ~ cosq~/  cos 2q~ ' 

a/6 al ( a,~u t ududq~ 

Pli  

a, = 0,SD r, a~ = al -~- h; S (Pl,) = S (Pll) = ]/-3(De + h) h/6, i = 2, 6; 

Pli is the end face of one of the cell walls D1; P'li is a perfect triangle amounting to the 1/6th of the cell bottom D 1. 

Having calculated the mean integral value of the heat flux through the cooled surface of the reflector 

= f --% rdr = 
OZ z=~ 

R 
2~tX A=B(~x~) S $o(e,j) rdr--  Qo [t - -exp( - -k0R=)L 
R 2 R2ko n--I 0 

(lo) 

it ,is possible to determine, with the aid of Eq. (9), the thermal head coefficient (the heat releasing capability of the heat 

exchanger) A = q/(Tma x - Tin): 

1 = 2ko {~__aBnB(cr + 
A 1 - -  exp (--koR 2) 
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(11) 

k , n ~ l  n : l  

where B n = [Jo(anR)]-2 fo R r exp(-kor2)Jo(an r) dr. 

Assuming that the heat-transfer agent velocity Vno z near the throats of all the nozzles is the same and that the radii of 

the nozzles rj may be different, we write the heat balance condition (5) for the cell Dj in the form Mjc(T m - Tin ) =/~2Qj, where 

Mj = zcri2pVnoz; 

A ([Sh)v,~ th ([ShH) + A.~ A,~B (a,) ~_f Jo (~nr)rdrdt?. Oj 2I~ 
i : I  k = [  n = [  P]i 

Then the requirement of the equality of the mean heat-transfer agent temperature in all the cells (Tm = const) leads to the 

condition 
9 o 

rj/r-i : QflQI, (12) 

which is valid for all j = 2 ..... p, where p is the number of the cells; for cells equidistant from the axis 0z (Fig. 1) the radii of the 

nozzles are all equal, since the values of Qj are equal for them. 

Integrating equality (6) with respect to the cooled surface of the reflector S~, we obtain the relation 

_ T m  = O o [1 - -  exp (--koRZ)], (13) 
~R2ko 

where 2" = fs6 f TdS/(:n:R2) �9 

Now we can determine the other most important characteristic of the considered cooling system, i.e., the effective 

heat-transfer coefficient a = q/(~? - Tin ). Having added equalities (5) with respect to all j = 1 .... , p and taking into account Eqs. 

(10) and (13), we find 

1 1 L ~ OT dS. 
(14) 

Here S = Uj p Sj is the cooled surface of all the cells, M = Z j ~  Mj = ~PVnoz~j=P 1 rj 2 is the overall heat-transfer agent flow 

rate. 

The integral on the right-hand side of Eq. (14) can be presented in the form 

" f 5T dS : k #~ 
7~CpVJnozz ( r~ - ~ - ~  ~ r~) 

& i k 

Here, each s u m  3~ik Qik is the overall flux through the cooled surfaces of all the cells which are equidistant from the axis 0z 

passing through the center of the mirror surface. The radii of the nozzles of these cells enter into the sum Elk r2ik. Further, using 

relation (12), we can write 

QI+XXQ'  (QI+XXQ,, )Q1 
k i k k i h 

k i h h ilt 

Q1 

With account of Eq. (11), we finally obtain 

1 _ 1 1 2ko ~-~ 
o~ - -  A + - -  ~ B,~B (a,~). (15) 

i - -  exp (--koR ~) n=l 

In the case of a uniform distribution of the heat flux q(r) over the mirror surface (uniform illumination), when k 0 = 0, 

q(r) = Q0, the radii of  all the nozzles are identical (rj = r 1, Mj = M1, j = 2 ..... p); B n = 0, n >__ 2; B t = R2/2, B(at)  = 1//~, then 

relations (11) and (15) yield 
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Fig. 3. Effect of the relative irradiation radius of the mirror surface r/ = ro/R (a) and of the 

reflector thickness 6, mm (b) on the effective heat-transfer coefficient a,  kW/(m 2 .K) and 

thermal head coefficient A, kW/(m 2 .K), at 6 = 1 mm (a); ~/ = 1 (b), Vno z = 1 m/sec for 

different hydraulic diameters of water-cooled cells Db: 1, 2) D h = 3.25 mm; 3, 4) 6.5 mm. 

I__= I - - ,  1 .~_ I / 3 D  h [8~t~,2A(13h) Lh(F3hH)+DIa I .  
A - -  ~t 2MI--------~ (16) 

Note that for cells having the shape of tetrahedral prisms (the basis is a square), one can use the obtained formulae but 

with the following changes: it is necessary to discard the factor ~ in Eq. (16) and to replace the factor 6 by 4 in Eq. (11). 

When determining the constants Cnl and Cn2, the outward integral should be calculated for the interval [0, n/4]; it is also 

necessary to take into account that S(Pn)  = 0.5h(D h + h), I = 0.5D h. 

Comparing Eq. (16) with the corresponding formula for the case of tetrahedral cells, we come to the conclusion that in 

the case of the fixed hydraulic diameter of the cells and other parameters being equal (except l), the heat removing ability of the 

cooling system with hexahedral cells is higher. This is attributable to a larger area of the cooled surface of the cell in the case of 

tetrahedral cells with the same heat-transfer agent flow rate per one nozzle. 

For  the same reason, the rise in the height of the cell walls leads to a decrease in a and A, as can be easily demonstrat- 

ed with the help of Eqs. (11) and (16) taking into account the fact that f(H) = t h ~ H )  is a monotonically increasing function. 

The expressions obtained for the effective heat-transfer coefficient and the thermal head coefficient indicate that the 

basic reserve for heat-transfer enhancement is the heat-transfer coefficient # on the surfaces that contact the heat-transfer agent. 

There are several possibilities for its increase (see Eq. (4)): 1) by decreasing the hydraulic diameter of the cell; 2) by increasing 

the heat-transfer agent velocity; 3) by applying heat-transfer agents with a high thermal conductivity and low viscosity. Increasing 

ff infinitely in Eqs. (11), (15), and (16), we arrive at the physical limits for the considered characteristics of cooling systems: 

a) with hexahedral cells 

b) with tetrahedral  cells 

[l - -  exp (--koR~)] M~c 
' ( 1 7 )  o o  

12ko ~ B,:Cn2 sech (a,~6) 

cz = A =  [ 1 - - e x p ( - - k o R ~ ) l M l  e 

8k0 ~ B,~C~2 sech (~,~6) 
(18) 

For a uniformly il luminated mirror we have, respectively, 

a = A : 2 ] /3-Mlc/3D~ and! a = A = Mlc/D2h. (19) 

For  a copper mirror with water-cooled hexahedral cells the values of a and A were calculated from Eqs. (11) and 

05)-(19) with the following values of the parameters: ,;t = 380 W/(m .K), 2 l = 0.67 W/(m .K), c = 4186 J/(kg.K),  p = 965 

kg/m 3, v = 0.326.10 -6  mZ/sec, R = 50 mm, H = 5 mm, h = 1 mm, r t = 0.5 mm. Some of the results of the calculations are 

illustrated in Figs. 3 and 4. 
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Fig. 4. Effect of the heat-transfer agent velocity Vno z m/sec at 

different relative irradiation radii of the mirror surface r / o n  

the heat-transfer coefficient of the surfaces of the cell walls/z, 

kW/ (m 2 . K ) ,  effect ive hea t - t r ans fe r  coef f ic ient  c~, 

kW/(m 2 .K) and thermal head coefficient A, kW/(m 2 .K) at 

D h = 3 . 2 5 m m ; 6  = l m m .  

Analyzing the graphical relations obtained, we arrive at the following conclusions. 

The increase of the homogeneity of the mirror surface illumination, i.e., the increase in the relative illumination radius 

r] = roAR , leads to the growth of a and A (Fig. 3a) with a > A, and the range of variation of the thermal head coefficient is 

much wider (a >> A at small r/'s). With an infinite increase in r/ (uniform illumination), a = A. 

The increase of the reflector thickness (0.5 mm < 6 < 5 mm) leads to a slight growth of a and A (Fig. 3b), which is due 

to the temperature fall on the cooled reflector surface; however, a further rise of c~ will lead to an undesirable growth of 

temperature and thermal stresses on the surface being irradiated. 

From Fig. 4 it follows that c~ </z ,  i.e., the effective heat-transfer coefficient is smaller than the heat-transfer coefficient 

on the surfaces of the cell walls. This is due to the fact that heat transfer through the bot tom surfaces of the cells exceeds that 

through the bottoms of the side walls. 

It is possible to attain a substantial increase in the values of  the heat-transfer characteristics c~ and A by decreasing the 

hydraulic diameter of the cells D h down to several millimeters (see Fig. 3) and also by increasing the heat-transfer agent velocity 

Vno z (i.e., by increasing its flow rate), Fig. 4. It should be noted here that the reduction of the hydraulic diameter of the cell 

increases the resistance to liquid flow, thus imposing restrictions on the velocity because of the mechanical action of the jet on 

the reflector. This circumstance should be taken into account when developing a specific scheme of heat removal. 

Comparison of the results of calculations presented in Figs. 3 and 4 with those given in [5] for the effective heat transfer 

in a jet  heat exchanger having cylindrically shaped cells shows that the data from [5] (Tables 3 and 4) are about two times those 

we obtained for a. It can be assumed that a certain disagreement of the results is due to the fact that the values of a given in [5] 

were obtained for small distances between the nozzle tip and the cell bot tom (hnoz/dnoz < 1) when the values of  the function 

f(hnoz/dnoz) , which influences heat transfer in the cell (see Eq. (3)), exceed 1. 

Calculations by Eqs. (17)-(19) show that a considerable increase in heat transfer from the surfaces of  the cell wails for 

the nozzle Reynolds numbers of order 104-105 in a copper heat exchanger could have resulted in the effective heat transfer flux 

from 300 to 3000 kW/(m 2 .K). 

NOTATION 

R, mirror radius; 6, reflector thickness; r0, radius of laser beam incident on mirror; k 0 = 2r0-2; r/ = roAR , relative radius 

of irradiation; T, T m, Tin, temperature,  mean temperature of heat-transfer agent, heat-transfer agent temperature at nozzle inlet; 
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v = T - Tm; Dh, hydraulic diameter of ceil; l, h, H, length, thickness and height of cell wall, respectively; rj, radius of cell nozzle 

Dj; Vnoz, heat-transfer agent velocity at nozzle exit; hnoz, distance between nozzle tip and cell bottom; dnoz, nozzle diameter; q(r) 

density of heat flux absorbed by mirror surface; Q0, heat flux density at mirror center; a, effective heat-transfer coefficient; A, 

thermal head coefficient; )~, thermal conductivity coefficient of mirror material; 2l, thermal conductivity coefficient of heat-trans- 

fer agent; c, p, specific heat and density of heat-transfer agent; v, kinematic viscosity of heat-transfer agent; Mj, heat-transfer 

agent flow rate in cell Dj; Sj, cooled cell surface Dj; S~, cooled surface of reflector; S~j, bottom surface of cell Dj; p, number of 

cells; J0, J1, Bessel functions; sinh, cosh, tan, sech, hyperbolic sine, cosine, tangent, and secant, respectively; Re, Nu, Pr, 

Reynolds, Nusselt and Prandtl number, respectively; bt, coefficient of heat transfer from the surfaces of cell walls. 
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